Adeno-associated virus 2-mediated gene therapy decreases autofluorescent storage material and increases brain mass in a murine model of infantile neuronal ceroid lipofuscinosis.
نویسندگان
چکیده
Infantile neuronal ceroid lipofuscinosis (INCL) is the earliest onset form of a class of inherited neurodegenerative disease called Batten disease. INCL is caused by a deficiency in the lysosomal enzyme palmitoyl protein thioesterase-1 (PPT1). Autofluorescent storage material accumulates in virtually all tissues in INCL patients, including the brain, and leads to widespread neuronal loss and cortical atrophy. To determine the efficacy of viral-mediated gene therapy, we injected a recombinant adeno-associated virus 2 vector encoding human PPT1 (rAAV-PPT1) intracranially (I.C.) into a murine model of INCL. INCL mice given four I.C. injections of rAAV-PPT1 as newborns exhibited PPT1 activity near the injection sites and decreased secondary elevations of another lysosomal enzyme. In addition, storage material was decreased in cortical, hippocampal, and cerebellar neurons, and brain weights and cortical thicknesses were increased. These data demonstrate that an adeno-associated virus 2 (AAV2)-mediated gene therapy approach may provide some therapeutic benefit for INCL.
منابع مشابه
CNS-directed AAV2-mediated gene therapy ameliorates functional deficits in a murine model of infantile neuronal ceroid lipofuscinosis.
The neuronal ceroid lipofuscinoses (Batten disease) are a group of inherited neurodegenerative diseases characterized by the progressive intralysosomal accumulation of autofluorescent material in many cells, visual defects, seizures, cognitive deficits, and premature death. Infantile neuronal ceroid lipofuscinosis (INCL) has the earliest onset ( approximately 1.5 years of age) and is caused by ...
متن کاملIntracranial delivery of CLN2 reduces brain pathology in a mouse model of classical late infantile neuronal ceroid lipofuscinosis.
Classical late infantile neuronal ceroid lipofuscinosis (cLINCL) is a lysosomal storage disorder caused by mutations in CLN2, which encodes lysosomal tripeptidyl peptidase I (TPP1). Lack of TPP1 results in accumulation of autofluorescent storage material and curvilinear bodies in cells throughout the CNS, leading to progressive neurodegeneration and death typically in childhood. In this study, ...
متن کاملRadioiodinated Capsids Facilitate In Vivo Non-Invasive Tracking of Adeno-Associated Gene Transfer Vectors
Viral vector mediated gene therapy has become commonplace in clinical trials for a wide range of inherited disorders. Successful gene transfer depends on a number of factors, of which tissue tropism is among the most important. To date, definitive mapping of the spatial and temporal distribution of viral vectors in vivo has generally required postmortem examination of tissue. Here we present tw...
متن کاملTreatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA.
Late infantile neuronal ceroid lipofuscinosis (LINCL) is an autosomal recessive, neurodegenerative lysosomal storage disease affecting the CNS and is fatal by age 8 to 12 years. A total average dose of 2.5 10(12) particle units of an adeno-associated virus (AAV) serotype 2 vector expressing the human CLN2 cDNA (AAV2 CU h-CLN2) was administered to 12 locations in the CNS of 10 children with LINC...
متن کاملFeasibility of gene therapy for late neuronal ceroid lipofuscinosis.
Late infantile neuronal ceroid lipofuscinosis is a progressive childhood neurodegenerative disorder characterized by intracellular accumulation of autofluorescent material resembling lipofuscin in neuronal cells. This report summarizes the new therapies under consideration for late infantile neuronal ceroid lipofuscinosis, with a focus on strategies for in vivo gene therapy for the retinal and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurobiology of disease
دوره 16 2 شماره
صفحات -
تاریخ انتشار 2004